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226. Chemical Selectivities Disguised by Mass Diffusion
I. A Simple Model of Mixing-Disguised Reactions in Solution

15t Communication on the Sclectivity of Chemical Processes

by Roland J. Ott and Paul Rys

Technisch-Chemisches Laboratorium
Eidgcnossische Technische Hochschule, Ziirich

(16. X1, 73)

Summary. The influence of mass diffusion on substrate and posftional selectivities is discussed.
A simplc model is developed which allows a description and simulation of the coupling of the mass
diffusion with the chemical reaction during the mixing process bf two reactant solutions. For
competitive, consecutive reactions and competitive, parallel reactions the general behaviour and
the dependence of the product selectivity ou diffusion effects is demonstrated.

1. Introduction, — Kinetic studies can be used to establish the mechanism of a
reaction if, and only if, the results represent the real course of the chemical reaction,
namely the bond breaking and bond making step. In the case of fast reactions this
condition. is not always fulfilled as pre-equilibrium diffusion processes can disguise
the kinetics of chemical reactions and hence affect the distribution of the products in
competitive reactions (diffusion-disguised selectivity). In general there are at-least
two situations in which diffusion effects may be involved in reactions in solution. The
observed Kkinetics of a reaction can be

a) influenced by the rate of m1xmg of the reaction solutions!) (= mlxmg-dzsgmsed
kinetics) or

b) determined by the rate of formation of the encounter complex (= encounter rate-
determined?®) kinetics).

To avoid a misinterpretation of the kinetic data one has to take into account such
diffusion effects.

It is necessary to specify clearly the influence of the diffusion process on various
selectivities: Whereas the posstional selectivity depends on the probability of a
successful collision within the encounter complex and therefore is not linked -directly
with diffusion effects, the substrafe-selectivity of fast reactions is, in most cases,
disguised by such diffusion effects. The results of various investigations [3] are
explicable with the help of this concept of disguised kinetics and selectivity.

1) For an introduction to the treatment of mixing problems see [1]. For comprehensive papers
compare [2].

2) We speak of encounter rate-defermined kinetics if the kinetics are influenced by two processes
namely the formation of the encountcr complex and the chemical reaction within the en-
counter complex, In encounter rate-Jimifed (controlled) reactions the kinetics are given only
by thc rate of formation of the encounter complex,
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Furthermore, empirical correlations based on studies of reaction kinetics, such
as the linear selectivity relationship of free energies {4] postulated by H. C. Brown,
will only provide useful information about the actual course of a reaction if diffusion
effects are eliminated [5].

2. The Selectivity of Rfactlon Systems Disguised by Mixing. -- In order
to carry out a chemical reaction it is necessary to bring together the two reacting
species 4.e. to mix them. If such mixing processes have an influence on the ratc of a
chemical process they will also influence its selectivity?). A knowledge of the effect
of mixing is therefore of decisive importance in the control and optimization of the
distribution of the products formed. Basically one has to distinguish between steady
state and non-steady state reaction systems. Several reports have appeared con-
cerning the influence of diffusion processes on the selectivity of steady state systems
in the field of heterogeneous catalysis [6]. In the present paper we concern ourselves
with non-steady state systems such as those encountered in reactions carried out
batch-wise.

3. The Basic Concept of a Mixing-Reaction Model. — In order to describe
the mixing process occurring during the addition of one solution to another by a
model it is useful to consider the following processes:

a) addition of one solution to another; -
b) eddy diffusion (mechanical transport of the eddies, e.g. by stirring);
¢} molecular diffusion (transport processes within the eddy).

If we add a solution of a species A to a solution of a species B eddies of solution A
in solution B are created. As a first approximation we will consider these eddies as
spherical drops with constant mean radius R. This radius R depends on the intensity
of the turbulence created by mixing and may be controlled, for example, by mechani-
cal stirring. From the theory of turbulence [7] one can estimate the minimum mean
size of such elements of liquid. For the usual solvents e.g. water, methyl and ethyl
alcohol the mean minimum radius R of the eddies in optimal turbulence is approxi-
mately 10~2 to 10-3 cm; this corresponds to an agglomeration of about 1012 to 1016
molecules. The size of this liquid element increases with increasing viscosity of the
solvent. In a mechanically well-stirred solution, the single eddies undergo a fast
mutual interchange (a so-called eddy diffusion (8]). Generally this eddy diffusion
is much faster than the molecular diffusion within the eddy. Owing to this fact
a very important simplifying assumption can be made for our model, namely that
the concentration gradient between the interface of the eddies and the solution can
be neglected. Consequently the concentrations at the interface of the eddies corre-
spond at any time to those in the surrounding solution. In order to obtain a simple
mathematical description of the mixing processes, we consider one of the reactants
(e.g. species A) and the resulting products to be immobile in the eddy into which the
mobile molecules of the other substance (e.g. species B) penetrate by molecular dif-

8) The selectivity of competing processes can be defined as the ratio of their relaxation times,
The relaxation time (7) of a process is the time needed for the system to traverse a fraction 1/,
of its path to equilibrium.
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fusion4). The moment the chemical reaction occurs the diffusing mobile molecules
(species B) change their identity and consequently are: considered as immobilized in
the eddy.

In the present paper we will consider the influence of mixing effects on the
selectivity of the two most common competitive reactions, namely the competitive,
consecative and the competitive, parallel reactions.

Competitive, Consecutive Second-Order Reactions:

A+B B R primary reaction
N (Scheme T)
R+B — S secondary reaction

%1, kg: real second-order rate constants.

To form one molecule of the secondary product 8 two molecules of B, in two con-
secutive reaction stages, are immobilized. In Fig. 1 the mixing-defermined reaction
course of a competitive, consecutive reaction is schematically sketched: One molecule
of B can react with a molecule of A only if it can move successfully through the
peripheral zone of the R molecules already formed, ¢.e. if it does not react with the
primary product R to give the secondary product S. The probability that this secon-
dary reaction takes place decreases with an increase in the rate of diffusion. The yield
of the product 8 is therefore a measure of the efficiency of the transport processes
occurring in the reaction system. In the most extreme case of a mixing-limited
reaction none of product R but only product S will be found at the end of the reaction,
irrespective of the magnitude of the ratio %/4a.
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Fig. 1. Schematic vepresentabion of a mixing-determined reaction course for competitive, consecutive

second-ovder veactions (Scheme 1), asswming constani eddy sise. to << t1 << ta: reaction times;

mobile species: 4 reagent B; immobile species: O reagent A; ® primary product R; @ secondary
: product S

Similarly, one could consider the molecules B to be immobile in the eddies into
which the mobile molecules A could penetrate by molecular diffusion from the
surrounding solution. In this case the product R has to be considered as a new mobile
species which could diffuse to a further molecule of B and would be immobilized by
reaction. These two approaches should in principle give similar descriptions of the
system,

4) In reality a diffusing molecule B entcring into the eddy replaces a solvent molecule. The fact
that this is not considered in the present model docs not affect the applicability (usefulness)
of the modcl.
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Competitive, Parallel Second-Order Reactions:
A+B b2, p

C+B L, @
kg, kq: Teal second-order rate constants,

The species A and G compete for the same reagent B. In Fig. 2 the mixing-
determined reaction course of competitive, parallel reactions is shown schematically:
If the concentrations of the molecules A and C are equal and if ks 3 &4 the reaction
zone of product P precedes the reaction zone of product Q. In order that the reagent
B can react with A to give P it has to diffuse first through the already formed zone
of product P which contains many more unreacted molecules of G than of A. Com-
ponent G therefore, appears to react faster than would be expected from the ratio
ks/ka. This leads to a decrease in the selectivity, which tends to the value 1 for the
most extreme case of processes limsted by mixing. ~

(Scheme 2)
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Fig. 2. Schematic represemiation of a mixing-determined reaclion course for competitive, parallel
second-avder veactions (Scheme 2), assuming constant eddy size. to < t1 << tz: reaction times; mobile
species. + reagent B; immobile species: O rcagent A: A reagent C; @ product P; A product Q.

4. Mathematical Description of the Mixing-Reaction-Process®). — The
molecular diffusion process of the mobile molecules within the eddies can be considered
as a ‘random walk’ and as a non-steady state diffusion process; it can be described
by the second Fickian equation:

0 [Bliot
DV2(B] = ot (1a)
For spherical geometry we have to put (02/0r2 + 2/r ¢/dr) in place of V2:
#[B) _ 2 O[B]\  0[Blw

[B] concentration of the mohile molecules B [mol/l]

[B]Jtat total concentration of the mobile and immobilized molecules B [mol/l]
D diffusion coefficient of the mobile molecules B [cm?/s]

r polar coordinate [cm]

t time [8]

v8  Laplacian operator

5) For a more detailed derivation of the equations which are used to describe the mixing-
reaction system see Appendix. For definition of symbols, see list at end.
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The diffusion equation (1) represents the general type of a parabolic partial dif-
ferential equation for equalization processes (e.g. mass, heat flow); it describes the
correlation between the local and temporal change of concentration. The left hand
side of the equation (1) represents the difference in flux in and out of the two opposite
boundaries of a volume element. The right hand side is the amount accumulated in
that volume element. The equation formally expresses the fact that these two
quantities must be equal. Fick’s second equation is not, therefore, a statement of
a new mechanistic assumption or proposition. It is merely a necessary condition for
the conservation of material, It follows that the left hand side must be concerned
with the mobile molecular species subject to the diffusional statistical motion which
opposes maintenance of an existing gradient of concentration. The right hand side,
however, does not imply anything about the state of the molecules (mobile, im-
mobilized or both) added to the volume element. In any event, this concentration
refers to the total number of molecules which have amived in the volume element
but have not departed. It follows that [B]iot == [B] only if a pure diffusion process
takes place. In the case when an immobilization process takes place at the reactive
sites A of the substrate — in the present case, a change of chemical identity of the
species B by chemical conversion — the following equation is generally valid:

[(Bliot = [B] + P(B], t) (2)
@([B], t) immobilization function '

For competitive, consecutive reactions (Scheme 7) equation (3) is valid.

[Bliot = [B] + [R] + 2 [8] (3)
[R] concentration of primary product R [mol/l]
[S] concentration of secondary product $ [mol/1]

Combining equation (3) with Fick’s second equation (1b) we obtain the diffusion-
reaction equation (4) for spherical geometry:
%[B] 2 0[B] 0[B] = O/R] 0[8]
— 2 = T —_ 4
D(0r2 rOr) 0t+0t +2 ot ()
The local concentration change of the two species R and § are given by the dif-
ferential equations (5) and (6).

Ql[)l:j. = k1 [B] ([A], — [R] — [S]) — ks [B] [R] )
0[8]
5= [BIR] (6)

[Alp initial concentration of A [mol/l]
%1, kg real second-order rate constants [1/(mol s)]

For competitive, parallel reactions (Scheme 2), equation (7) is valid:
[Bliot = [B] + [P] + [Q] (7

[P concentration of product P [mol/l]
[Q] concentration of product Q [mol/I}



HxeLveTIcA CHiMIcA AcTA — Vol. 58, I'asc. 7 (1979) — Nr. 226 2079

Combining the equation (7) with Fick’s second equation (1b) we obtain the dif-
fusion-reaction equation (8) for spherical geometry:
2 0P
o (0 [B] , 2 oLPg],_) 98] | a[Q)

or? r or ot ot ot (®)

The local concentration chamge of the two species P and Q are given by the dif-
ferential equations (9) and (10):

o[P]

—;= = ks [B] (AL — P) ©)
" — ke (B] (G~ 10D (10)
(Cl, initial concentration of G [mol/l]
ks, kg real second-order rate constants [1/(mol s)]

The equations (4) — (6) and (8) — (10) can be normalized by introducing the
following dimensionless parameters$):

_r. g_D. L L .8
=gt Trmt BTy, e O
[P] 101, [Alo [Cho .
Qp3= ——: -1 EBm-—t; Ma=
i TR S [Blo ’ [Alo ’
Rk [B Reke[B R2ky[B] RekyB
Fham— B ghg= a0 g SRBL, g, CRBh

[Blo ipitial concentration of the mobile molecules B [mol/l1]

K mean radius of the eddies [cm]

@}, ; normalized rate constant of the reaction step i with respect to [Blo. This cxpression cor-
responds to the square of the so-called Thisle-Modul which is used to charactcrize diffusion
determined (steady state) heterogeneous reactions [6] [12]. ¢ is proportional to the ratio
of relaxation times of diffusion and chemical reaction [11] [13].

For experimental appraisal of the system it is convenient to disciss the initial
conditibns in terms of mol ratios (*E). Therefore, a, the ratio of eddy volume con-
taining A or A and C to solution volume containing B is introduced:

*Bep=aBp, *E=qE; *2p1=afs1; *¢}, = q::B,i
i-+1,2,3,0r4

This generalization leads to the equations (11) — (16):

%) The normalization was performed using [Blp. In a similar way [A]p could be used in the
normalization procedure. This would lead to other dimensionless parameters which would be
labelled with the index A, e.g. B, = [B]/[AJo.
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Competitive, Consecutive Second-Order Reactions (Scheme 7):

02*Byg 2 0*Bg 0*Bg 0*Q2s; %2352
ke TX X T et tTar tPom (0
o*Q
Fr = *¥hi*Bs (\E—*Qn1- 4055~ *94,*Ba %1 (12)
0*83,2
—s7 = %2 *Bs *25,1 (13)

Competitive, Parallel Second-Order Reactions (Scheme 2):
#*Bp 2 0*Ba _ 0*By  0*@na 095

% T X X T ot T oT 4

D_;?r_ns = *gZ, *By (*E — *Qp.9) (15)

OL;?A' ~ *gZ, *Bp (M *E — *25,4) (16)

5. Procedure for Numerical Solution. — The two systems of equations

(11)-(13) and (14)~(16) consist of parabolic partial differential equations (11) and (14)
which are coupled with eq. (12), (13) and (15), (16) respectively. Since an analytical
solution of such systems does not exist, a numerical approximation must be used.
In addition to the stable explicit finite difference method [9], the Method of Lines
[10] was also used. The detailed procedure has been described elsewhere [11]. The
computer programme was written in FORTRAN and the calculations carried out on
a CDC 6400/6500 computer.

6. Simulation of Mixing Disguised Competitive, Consecutive Reactions5), —
The system of equations (11)-(13) which describes the mechanism of competitive,
consecutive second-order reactions coupled with a diffusion process is determined
by the three parameters *E, *@3;, *@%; and the initial and boundary conditions?).
For *E =1 and with *@}; constant an increase in the value of *¢}, will result
in an increase in the relative yield Xg of the secondary product 8. This is shown in
Fig. 3 for 1009, conversion (*Bgp = 0). A clearer representation of the influence of
diffusion effects on Xg is given in Fig. 4. With an increase of *¢} , - 1.¢. an increasing
influence of the diffusion process — the relative yield of the product S exceeds the
value of the reaction controlled process. The smaller the value of *@%, the closer
will be the yield of 8 to the reaction controlled value. On the other hand, the extreme

7) The initial conditions for all calculations are defined in the Appendix (A-22). The boundary
conditions are given by equations (A-23) and (A-24).
For given initial conditions and varying boundary conditions (by changing ¢), calculations
for 1009%, conversion of the species B (*Bp = 0) have shown that Xs and & values arc
determined solely by the values of *¢d, ,, *@} ,and *E, irrespective of the specific value of @.
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case where only the product 8 is found will be reached when *g} ; approaches
infinity. The more the process is disguised by diffusion 7.e. *@3 ; is large, the less
the ratio *@}./*@}, (respectively ki/kg) will effect the relative yield Xs of the
product 8. In Fig. 5 the effectiveness &r of the chemical reaction on the formation
of 8 is shown as a function of *}, for different ratios of *@§,/*@h, * & re-
presents the factor by which the chemical reactivity influences the selectivity of the
total process and is given by the ratio of the reaction controlled and mixing disguised
Xg-values [14]: & = 1 means that the selectivity is determined excluswely by the
chemical reactivity. The values calculated for the Fig. 3-5 are listed in Table 1.

10
X
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Fig. 3. Diffusion-Reaction-Model: Calculated relative yields X s as a function of *@% 4 for different
values of *@} | (spherical geometry) *E =1; *Bg = 0
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Fig. 4. Diffusion-Reaction-Model: Calowlaied relative yields X g as a funciion of 'tpn g Jor different
ratios *@} 1/ @} g (spherical geometry) *E =1; *Bg =0
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Fig. 5. Dsffuston—Raamon-M odel  Calculated effectiveness er as a function of "th g Jor diffevent ratios
of 'pn 1[*913' (spherical geometry) *E =1; *Bg =0

131
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‘able 1. Diffusion-Reaction-Model: The influence of the parameiers *@% 1 and *@% 5 on competitive,
consecutive second-order reactions (Scheme 1; spherical geometry)
*E = 1; *By = 0; RC: reaction-controlled (*@% — 0)

*P5.1/*Ph,a *Ph.1 *Ph.e mol %, 88) Xg &r
1 RC RC 31.8 0.636 1.000
0.1 0.1 31.9 0.639 0.998
1 1 32.1 0.642 0.993
2 2 32.2 0.644 0.988
10 10 32.6 0.653 0.974
50 50 36.8 0.736 0.864
100 100 39.9 0.799 0.796
250 250 43.8 0.876 0.726
500 500 45.6 0.912 0.697
1000 1000 46.5 0.931 0.683
2 RC RC 24.8 0.497 1.000
0.2 0.1 249 0.498 0.996
2 1 25.0 0,500 0.992
20 10 26.4 0.529 0.940
40 20 29.2 0.585 0.850
200 100 38.8 0.776 0.640
400 200 42.5 0.850 0.585
5 RC RC 16.7 0.334 1.000
5 1 16.9 0.337. 0.991
12.5 2.5 17.5 0.350 0.954
50 10 22.6 0.451 0.741
100 20 27.5 0.349 0.608
180 36 31.6 0.632 0.528
300 60 35.1 0.702 0.476
1000 200 42.3 0.845 0.395
10 RC RC 11.6 0.232 1.000
1 0.1 11.7 0.234 0.991
10 1 12.0 0.241 0.963
25 2.5 13.6 0.272 0.853
50 5 16.5 0.329 0.705
100 10 20.9 0.418 0.555
250 25 28.0 0.560 0.414
500 50 334 0.668 0.347
1000 100 38.1 0.761 0.305
2000 200 41.9 0.839 0.277
102 RC RC 2.6 0.052 1.000
10 0.1 2.8 0.056 0.929
50 0.5 4.0 0.080 0.650
100 1 5.9 0.118 0.441
500 5 14.5 0.291 0,179
1000 10 19.9 0.399 0.130
5000 50 32.8 0.657 0.079
104 RC RC 0.1 0.002 1.000
1x108 0.1 0.6 0.013 0.154
5x108 0.5 2.8 0.056 0.036
1x10¢ 1 4.9 0.097 0.021
4 %104 4 12.2 0,243 0.008
1105 10 19.5 0.389 0.005
4% 105 40 30.6 0.612 0.003

) Mol-% arc related to the initial moles of B.
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Fig. 6 shows the relative yields X, calculated for the ratio *@%,/*@g,=1
(or kifkg = 1, respectively) as a function of the parameter *E. At all values of *0h.2
the relative yield Xs decreases as *E increases. The greater the value of *@}, the
smaller is the decrease in the yield of Xg.

Fig. 7 shows the influence of the parameter *E on the effectiveness of the chemical
reactivity on the formation of 8. For a given value of *¢} , the influence of the
chemical reactivity on the selectivity of the process decreases with increasing values
of *E. The calculated values for the Fig. 6 and 7 are listed in Table 2.

10
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Fig. 6. Diffusion-Reaction-Model: Calculaled relative yields X g as a function of *@% ¢ for different
values of *E (spherical geometry) *@% 4/* @t s =1; *Bg =0
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Fig. 7. Diffusion-Reaction-Model: Calculated effsctiveness er as a function of *@} o for diffevent
values of *E (spherical geometry) *@} (/*Ph2 = 1; *Ba =0

In Fig. 8 the simulated data are plotted in a manner which allows an easy survey
of the experimental results. The relative yield Xs is shown as a function of *@3,
for various *E *@%, and *@} 1/* @R (or ki/ks, respectively) values. The X values
which can be obtained, for instance, by varying [B]p only and keeping [A]p and the
mixing conditions constant, all lie on an S-shape curve (selectivity curve) whose
position along the * @} ,-axis depends only on the value of *E *@} ;. As a consequence
of this, the relative ks values for different substrates can be found from the relative
positions of the respective selectivity curves using a particular value of *E as a
reference point.

7. Simulation of Mixing Disguised Competitive, Parallel Reactions, — The
system of equations (14)-(16) which describes the mechanism of competitive,
parallel second-order reactions coupled with a diffusion process is determined by
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Table 2. Diffusion-Reaction-Model: The influence of the payvamieley *E on competitive, consecutive
second-ordey veactions (Scheme 1; spherical geometry)
*ol /*@h s = 1; *Bx = 0; RC: reaction-controlled (*¢p8, — 0)

*E *q)‘,',., mol 9, Xg Er *E "Pi',n mol 9%, Xs &r
88) 1)

1 RC 31.8 0.636 1.000 5 RC 8.8 0177 1.000
1 321 0.642 0.993 1 8.9 0.178 0.982
10 32.6 0.653 0.974 10 12.5 0.251 0.704
50 36.8 0.736 0.864 50 20.9 0.419 0.421
100 39.9 0.799 0.796 100 254 0.508 0.348
500 45.6 0.912 0.697 500 35.8 0.717 0.246
1000 46.5 0.931 0.683 1000 40.2 0.804 0.220

2 RC 19.1 0.382 1.000 10 RC 4.7 0.093 1.000
1 19.3 0.387 0.987 1 4.8 0.097 0.963
10 211 0.422 0.905 10 9,0 0.179 0.522
50 28.5 0.571 0.669 50 17.5 0.350 0.267
100 32.5 0.650 0.588 100 22.2 0.444 0.210
500 41.4 0.829 0.460 500 334 0.668 0.140
1000 441 0.881 0.434 1000 38.1 0.761 0.123

Fig. 8. Diffusion- Reaction-Model: Caloulated rvelative yields X s as a function of *@} 4 for different
*E *@) p and *@h,,/*Ph,s values (spherical geometry) . . .. .. 0L/ Ph =1 —— - *h,y/
*@Pp. =10; ~*@} ;/*@h,g =~ 100; *Bs =0

the four parameters *E, *@} ;, *§ 4, M and the initial and boundary conditions®).
For *E = 1 the relative yield of the product Q, expressed as the mol fraction Xq,
approaches a mixing-limited selectivity-value for each *@}; value as *@}, in-
creases, This is shown in Fig. 9 for 1009, conversion (*Bg = 0).

Fig. 10 shows for *E = 1 and M =1 that for every *@} ;/*ph, ratio the relative
yield Xgq approaches the same mixing-limited value of 0.5. This limiting selectivity
value depends on the parameters *E and M as demonstrated in Fig, 11 and Fig. 12,
respectively. The calculated values for the Fig. 9-12 are listed in the Tables 3-5.

%) The initial conditions for all calculations are the same as those used in the calculations of the
competitive, consecutive reaction system (Appendix, (A-22)), except that [R] =[8] =0 is
replaced by [P] == [Q] = 0.

Xq values for 100%, conversion of the species B are determined solely by the values of *@}, 4,
*@% + M and *E (compare footnote 7).
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Fig. 9. Diffusion-Reaction-Model: Calcwlated velative yields Xq as a function of *ph, 4 for different
values of *@} g (spherical geometry) *E =1, M =1; *Bg =0
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Fig. 10. Diffusion-Reaction-Modsl: Calculated velative yields Xq as a funciion of *@% 4 for different
ratios * @} o/ * Q3 4 (spherical geometry) *E =1, M = 1; *Bg =0
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Fig. 11. Diffusion-Reaction-Modsh: Calowlated relative yields X as a function of * @} 4 for different
values of M (spherical gsometry) * @3 s/*®L 4 = 100; *E =1; #*Bp =0
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Fng 12. Diffus’.n-Reaction-Modsl: Calcwlaied velative yields Xq as a function of ‘q:’n,., for diffevent
values of *E (spherical geometry) *@% 3/*Ph 4 = 100; M = 1;*Bg =0
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Table 3, Diffusion-Reaction-Model: The influence of the parameiers * @3 5 and *@% , on competitive

parallel second-order reactions (Scheme 2; spherical geomelry)
*E=1;M=1; *Bg =0
RC: reaction-controlled (*¢%, — 0)

*eh.a/*Ph.  *ol, *ph . Xaq *od ot ek "0k, ol Xa
10-2 RC RC 0.966 10 1 10 0.160
10-8 101 0.966 10 1 0.170
10-2 1 0.966 102 10 0.247
101 10 0.965 108 102 0.404
3x101 30 0.961 104 108 0.439
1 102 0.936
3 3x108  (.887 108 RC RC 0.033
10 103 0.804 1 10-2 0.035
10 101 0.045
101 RC RC 0.835 102 1 0.075
10-2 102 0.835 108 10 0,200
101 1 0.830 5x108 50 0.340
1 10 0.825 104 102 0.396
3 30 0.817 108 108 0.488
10 102 0.757
104 109 0.593 108 RC RC 0.005
102 101 0.010
1 RC RC 0.500 108 1 0.049
10-2 10-2 0.500. 3x108 3 0.100
108 108 0.500 104 10 0.200
5x104 50 0.340
10 RC RC 0.160 106 102 0.400
101 10-2 0.160 108 108 0.488

Table 4. Diffusion-Reaction-Model: The influence of the parametey M on competitive, parallel second-

order reactions (Scheme 2; spherical geomelry)
'(pf,.,['tpﬁ,‘, =100;*E =1:*Bg =0
RC: reaction-controlled (*@% — 0)

M *@h.a Xq M *®Ph.4 Xq

1 RC 0.033 10 . RC 0.174
102 0.045 101 0.180
1 0.075 1 0.270
10 0.200 10 0.500
102 0.396 102 0.710
108 0.488 102 0.860

2 RC 0.057 20 RC 0.264
101 0.060 101 0.275
1 0.105 1 0.370
10 0.270 10 0.580
102 0.495 102 0.785
108 0.690 108 0.880

5 RC 0.109 50 RC 0.425
101 0.110 101 0.435
1 0.180 1 0.530
10 0.400 10 0.710
102 0.635 102 0.850

108 0.835 108 0.890
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Tabelle 5. Diffusion-Reaction-Model: The influence of the parameter *E on competitive, pavallel
second-order veactions (Scheme 2; spherical geometry)
*@ho/*®h  =100; M =1; *Bg =0
RC: reaction-controlled (*@}, — 0)

‘E *¢h.¢ . Xaq *E *P.4 Xq

1 RC 0.033 5 RC 0.011
102 0.060 101 0.012
1 0.064 1 0.018
10 0.202 10 0.045
102 0.396 102 0.230
102 0.490 108 0.405
104 0.495 104 0.485

2 RC 0.013 10 RC 0.010
101 0.014 101 0.011
1 0.025 1 0.015
10 0.105 10 0.024
102 0.295 102 0.190
108 0.455 108 0.378
104 0.493 104 0477

8. Conclusion. — Coupling of mass diffusion with chemical reactions during the
mixing process of {wo reactant solutions has been simulated with the help of a simple
model. The general behaviour of a competitive, consecutive and a competitive,
parallel second-order reaction can be adequately described by three or four para-
meters, respectively, These parameters, which can be varied experimentally in a well
defined manner, determine to what extent the product sclectivity is disguised by mass
diffusion effects. As long as the mixing modulus * % of the faster of the competing
reactions is smaller than ca. 0.1, diffusion effects on product selectivity can be
ignor¢d. However, mixing-disguised selectivities arc highly probable when *@f is
greater than 10.

Appendix

Derivation of the Diffusion-Reaction Equations (4)—(6) [15]. - After applying the
law ol ¢onservation of mass of species i to a differential volume element fixed in space in a dii-
fusion-reaction system and allowing the size of the volume element to decreasc to zero, onc
obtains:

oc ONyx ON; ON
W (“o:: gt 5 ) + T (A-Ja)
Nix, Niy, Njz rectangular components of the molar flux vector N1 [mol/(cm? s)]
| molar concentration of species i [mol/cm?3)
} JE molar rate of production by chemical reaction of species i [molf(cm? s)]
t time [s)
XYy, 2 rectangular coordinates [cm)

This is the equation of continuity which describes the change of molar concentration of the
comppnent i with respect to time at a fixed point in space. This change results from the motion
of spdcies i and its chemical reaction.

Ocy vV.N A-lb
ot - ( ‘) +rn ( - )
Ny molar flux of species i with respect to stationary coordinates [mol/(cm? s)]

v ‘del’ or ‘mabla’ operator
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The wvector differential operator V is defined in rectangular coordinates as
d - 0 - 0

. V=6;I+6yw+6.—dl— (A'Z)
8z, dy, 83 unit vectors associated with the X, y, z-coordinates

_. In order to obtain the equation which is generally used to describe diffusion the molar flux
Nj is replaced by the appropriate expression (A-7) which includes the concentration gradient.

—t n —
Ny=¢vi= leN.‘l + 5 {A-3)
=1
Cy Cy
X = zn‘ =5 (A-4)
¢y
j=1
L ch vi
x12N1=cIJ n-———-c;v (A-5)
i=1 ¢
]
4
_]: = -cD;Vxg (A-6)
Ni=c¥V—~cDyVx (A-7)

diffusion coefficient of species i [em?2/s]

Dy

-j; molar flnx of species i relative to the molar a.vera.ge velocity [mol/{cm? s))
c total molar concentration [mol/cm?3

Vi velocity of species i [cm/s]

v molar average velocity [¢m/s)

Xy mol fraction of species i [—]

Equation (A-3) shows that the diffusion flux Ny relative to stationary coordinates is the
resultant of two vectors, namely the vector given by equation (A-5) which is the molar flux of
i resulting from the bulk motion of the fluid and the vector1?) gnren by equation (A-6} which, in
turn, is the molar flux of i resulting from the diffusion superimpoged on the bulk flow.

‘When: equation (A-7) is substituted into equation (A-1b) we giet the following diffusion equa-
tion: '

001 -
-6;=——(V-c;v)+(V-cD,Vx;)+rl (A-8)

Equation (A-8) describes the concentration profiles of the species i in a diffusing system. The
only restriction is the absence of thermal, pressure and forced diffusion.

Assumption of Constant ¢ and D;. ~ If ¢ and D; are assumed to be constant*) equation
(A-8) becomes:

dey

3

Assumption of Zero Molar Velocity. ~ Considering a single eddy of the substratc we

assume that the molar velocity within the eddy is zero. For dilute solutions, this assumption is

= -1 (V:¥) — V) + Dy VEei + 1 (A-9)

10y _fl = «— ¢ Dy V x; is Fick's first equation of diffusion written in terme of the molar diffusion
flux Js

1) Usually the experimental work is carried out with dilute solutions, thus the concentration
of the solvent is much greater than tbat of the solutes and remains constant for an incom-
pressible fluid. The sum of all concentrations, i.6. ¢, may be taken as constant,
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valid and equation (A-9) becomes:
o
oc_t‘ D[ Vi g+n (A'lo)
V2 Laplacian operator

The Laplacian operator V8 ig fefined in rectangular coordinates as

ot o8 o
ot o T oa (A-1)

2
V2 = 2y

If, in addition there are no chemical changes occurring, one obtains

de
W‘ =D Vig (A-12)

which is called Fick's second equation of diffusion.

Asgsumption of Spherical Eddy with Constant Mean Radius., — If we consider a
sphere in which diffusion occurs from the surface to the centre, the diffusion-reaction equation
{A-10) for a constant diffusion coefficient takes the form

ey &8¢y 2 0o
ﬁ— = Di (_‘ora + l'_ “0‘?’) + (A'lja)

r = polar coordinate [cm]
Setting 1000 ¢y = [B]; Dy = D; ry = ra we obtain

0[B] 2 0[B) O[B]

D ( Ty 'a'r) = g —1000Ts (A-131)

Assumption of Zero Diffusion of the Substrate A, the Primary Product R and the

Secondary Product 8%), - As a first approximation to simulate the diffusion-reaction

system described in Chap. 4 we assume a stationary (fixed) substrate A, primary product R and

secondary product 8, i.e. the molecules A, R and 8 are supposed to be fixed within the eddy into

which q.\g species B diffuses and reacts with A or R, Although this is a drastic simplification which

in reality is certainly not true, it leads to a simple mathematical model that enables one to describe

qualitatively the real system,

For this assumption rg in equation (A-13b) can be replaced in a competitive, consecutive

second-order reaction system by the expression (A-16):

A+B— . R

R+B— 3§

>
A b 1A [B] - ke R] (] (A-14)
o[8]
L = bR [B) (A-13)
1000 rg = — "',‘(‘[';?’]' -2 -o-g«? (A-16)
0B] 2 9[B)" 0[B} J[R] oIS
D (G e )~ et et 2 (A7)

1%) ‘The competitive, parallel case can be treated in a manner analogous to the competitive,
congecutive case; this leads to equations (8), (9) and (10).
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Since the concentration of species A is changed only by chemicaﬁ reaction the appropiate equation
for this species reduces to
o[A]
<5 = — k1 [A] [B] {A-18)
This is similar to equations (A-14) and (A-15) for species R and 8. The right hand side of equation
(A-18) can be replaced by equation (A-14) and (A-15):

O[A] J[R] o8]

ot T Tt T ot (A-192)
O[A] oR] J[8]

3 -+ 5t + - o= 0 (A-19b)

The sum of the differcntials of the concentrations of A, R and 8 is zero, hence the sum of the
concentrations themsclves must be constant and equal to [A]p

[A] + [R] + [S] = [Ale (A-20)

When equation (A-20) is substituted into equation (A-14) we obtain the following equations which
describe the diffusion-reaction system of spherical gcomctry assuming a competitive, consecutive
chemical reaction: :

0B(B] 2 J[B] o[B] O[R] Ja(8)
(Gt T o) = ot T e (A-21a)
IR
2 = k1B (AN — (R - 18) ~ o [B) (R (A-21b)
as
._‘.g.t]. — k3 |B] R} (A-21c)

Assumpton of Diffusion from a well stirred Solution of lUmited Volume. — The
solution of the diffcrential equation system (A-21) has to satisfy certain specified initial and
boundary conditions. Ict us assume that the spherical eddy occupies the space r < R, while the
volume of the bath solution containing the diffusing species B (excluding the space occupied by
the eddy) is V. The concentration of solute B in the solution is always uniform and is initially
[Blo. The sphere containing the substrate A is injtially free from solute B:

Imitial canditions: [B] = 0 r<R t=0
[B] = [Bjp r=R t=0
(R] = |S] =0 r<R t=0 (A-22)

Boundary conditions: The general solution of a sccond-order partial differential equation
should cantain two arbitrary functions. These two arbitrary functions in the mathematical solution
must be chosen to satisfy the boundary conditions dictated by the assumption of diffusion into
a sphere from a well stirred limited solution.

The arbitrary functions (A-23) and (A-24) result from both the symmetry of the sphere and
the law of conscrvation of mass of the diffusing species B. Owing to the symmctry of the sphere,
there is no flux of B through the origin of the sphere i.e. the concentration gradient is zero.

B
() o eso .
o Jro
Applying the law of conservation of mass to the volume of solution V5 for the species B we obtain:

o[BI B\ |
Va ( _OT),=E = 8 I-— D ( or )r..]_{'J, t>=0 (A-24)
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— 3
Se=4aRt = = V, (A-25)
R
4
Vo= 5 n R? (A-26)
Se surface of the spherical eddy [cm?]
Ve volume of the sphetical eddy [cm3)
Vs volume of solution [cm?]

When equation (A-25) and (A-Zd:) are substituted into cquation (A-24) the following expression
is obtained:
oB Ve D /9[B
(B2) _— s YD) o,
ot /bR Vs R 0r )i E

D (oB]\ . ]
- —3aﬁ(—0r )ﬁ £ 0 (A-27)

a = V¢[Vy: ratio of cddy volume to solution volume | — |

List d Symbols

[A), [B], [C] concentration of A, B and C respectively [mol/l]
[Als, [Blo. [Clo  initial concentration of A, B and C, respectively [mol/l]

[Bliot total concentration of the mobile and immobilized molecules B [mol/l)

Dy diffusion coefficient of species i [cm2/s]

D =Ds diffusion coefficient of B [cm?/s]

I molar flux of species i relative to the molar average velocity [mol/(cm2 s)1
MD mixing-disguised

Ny molar flux of species i with respect to stationary coordinates [mol/(cm? s)|
Nix rectangular component x of the molar flux vector N; [molf(cme s)]

[P, [ @}, [R], [S] concentration of product P, Q, R and S, respectively [mol/l]
mean radius of the eddies [cm]

RC reaction-controlled {*g@% — 0}
S, surface of spherical eddy [cm?]
Ve volume of spherical eddy [em?)
Va volume of solntion (cm3]

2(8] . . . .
X = W‘ 2['ST normalized fraction of B which reacted to give 8 [—

Xs = 1: every B moleculc has reacted to give 8 (no R is found)

Xq= ——‘—[PJ[-?][ o normalized fraction of B which reacted to give Q [ —]
ci molar concentration of species i [mol/cm3]
c total molar concentration [mol/cm3]
ky, ks, kg, ky intrinsic (real) second-order rate constants [1/{mol g)]
r] molar rate of production by chemical rcaction of species i [mol/(cm? s)]
t polar coordinate (cm]
t time [s]
Vi velocity of species i [cm/s]
v molar average velocity {cm/s)
X mol fraction of species i [—]
XYy, z rectangular coordinates [cm]

(B8] .
*Bp =aBr=a N Bg is the normalized concentration of B with respect to (Bjo [~ ]
o Bg =1 :0% conversion of B
By ='0:100%, conversion of B
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. A
E=qE = V_EB_.E][: initial mol ratio of A and B [—]
(Clo ,
== TA] ratio of initial concentrations of C and A [~=]
0
D
T = T 1 normalized time [ —]
@ ([B), 1) immabilization function describing the chemical conversion of B
by
X " normalized polar coordinatc [—]
. [i] . . ) .
D, =8, =a Bl £p,; is the normalized concentration of the reaction product i
0 with respect to [Blp [~
v
a= va ratio of eddy volume to solution volume [— ]
B
—
dx unit vector associated with the x-coordinate
Xs{RC .
Er Xs(Mlﬂ) effectiveness factor of the chemical reaction s a part of the whole process.
B ) &r is defined as the ratio of the reaction-comtrolled (= RC) and the mixing-
disgwised (= MD) Xg values [—] & = 1: the chemical process is reaction-
controlled; €, < 1: the chemical process is mixing-disguised
T relaxation time [s)
Tp relaxation time of diffusion [s]
TR,} . relaxation time of the rcaction step i [s]
.rrd 1 . 1 Rfki[Ble ., . . . .
oh,y = P b = '« D @k, is the normalized rate constant of the reaction step i

with respect to [B]o. It is proportional to the ratio of re-
laxation times of diffusion and chemical reaction step i.
(= 7o/tR,1) [~]

i€l the chemical process is reaction-contyolled (limited)

ph»1 the chemical process is diffusion-determined (disguised by diffusion)
v ‘del’ or ‘nabla’ operator (scc Appendix)

vz Iaplacian operator (see Appendix)

Partinl financial support of this investigation by the Schweiserischer Nationalfonds sur For-
devung dey wissenschaftlichen Forschung (Project Nr, 2. 620 72) is gratefully acknowledged.

REFERENCES

[1] O. Lavenspiel, ‘Chemical Reaction Engineering’, J. Wiley, New York 1972, .Chap. 10;
Z. Stérbacek & P. Tausk, Mixing in the Chemical Industry; Vol. 5 (1965); V. W. Ukl & J. B.
Gray,: Mixing, Academic Press, New York 1965.

[2] K. B. Bischoff in: Applied Kinetics, Amer. chem. Soc. Publications, Wash, D.C. 1967, p. 2.

[3] W. S. Tolgyess, Canad. ]J. Chemistry 43, 343 (1965); G. A. Olah & N. A. Overchuk, ibid. 43,
3279 (1965); R. G. Coombes, R. B. Moodic & K. Schofield, J. chem, Soc, B 71968, 800; J. G.
Hoggett, R. B. Moodie & K. Schofield, ibid. B 7969, 1; Chem, Commun. 7969, 605; P, F, Christy,
J.H.Ridd & N. D. Steays, J. chem. Soc. B 71970, 797; J. H. Ridd, Accounts chem. Res, 4, 248 °
(1971); K. Fittig & P, Jannasch, Z, Chem. 7870, 162; S. B. Hanna, E, Hunsziker, T, Saito &
H. Zollinger, Helv. 52, 1537 (1969); E. Hunsiker, J. R. Penlon & H. Zollinger, ibid. 54, 2043
(1971); E. Rys, A, Schmitz & H. Zollinger, ibid. 54, 163 (1971); E. L. Paul & R. E. Tyeybal,
A.LCh. E. ]. 77, 718 (1971),

[41 L. M. Stock & H. C., Brown, Adv. phys. org. Chemistry 7, 35 (1963); compare also: R. O. C.
Normun & R. Taylor, Electrophilic Substitution in Benzenoid Compounds, Elsevier, Amster-
dam 1965, Chap. 11.

{5) P. Rys, P. Skrabal & H, Zollinger, Angew, Chem. 84, 921 (1972); Angew. Chem. internat.
Edit. 77, 874 (1972). '

[6] A. Wheelsr, Adv. Catalysis 3, 258 (1958); Catalysis 2, 153 (1955); J. Wei & C. D. Prater,
Adv. Catalysis 73, 203 (1962); J. Carberry, J. chem. eng. Sci. 77, 675 (1962); C. N. Saiterfield



HELVETICA CHIMICA ACTA —~ Vol. 58, Fasc. 7 (1975) — Nr, 226227 2093

& T. K. Sherwood, ‘The Role of Diffusion in Catalysis’, Addison-Wesley Publ. Co., 1963;
J. M. Thomas & S. J. Thomas, ‘Introduction to Heterogeneous Catalysis’, Academic Press,
New York 1967; A. Clask, “The Theory of Adsorption and Catalysis’, Academic Press, New
York 1970, Kap. 12,

[71 4. N. Kolmogoroff, Compt. Rend. Acad. Sci. USSR, 30, 301 (1941); J. O. Hinse, ‘Turbulence’,
McGraw-Hill, New York 1959 J. T. Davies, ‘Turbulence Phenomena', Academic Press,
Lomndon 1972,

[8] P. V. Danckweris, 'Dﬁiusmq Processes’, Gordon and Breach Science Publ., London 1971,
Bd 2.

[9] H. w. Reddich & F. H. Miller, ‘Advanced Mathematics for Engineers’, J. Wiley, New York
1948; G. E. Forsythe & W. R. Wasow, ‘Finite-Difference Methods for Partial Differcntial
Equations’, J. Wiley, New York 1960.

[10} J. S. Hicks & J. Wei, . Assoc. Computing Mach, 74, 549 (1967).

[11] R. J. O & P. Rys, J. chem. Soc. Faraday I 69, 1694 (1973); R. J. O#i, PhD. Thesis ETH,
Zarich 1972.

{12] G. Emig, Fortschr. chem. Forsch., Bd. 73, 451 (1969/70).

[13] P. Rys, Text. Res. J. 43, 24 (1973); P. Rys, “Uber die Selektivitit chemischer Prozesse’,
Inaugural Thesis ETH, Ziirich 1971.

[14] F. Pfister, PhD. Thesis ETH, Ztrich 1973,

[15] R. B. Bird, W. E. Stewart & E. N. Lightfoot, “Transport Phenomena’, J. Wiley, London 1960;
W. Strieder & R. Aris, ‘Variational Methods Applied to Problems of Diffusion and Reaction’,
Springer, Berlin 1973; G. Astarita, ‘Masa Transfer with Chemical Reaction’, Elsevier Publ.
Comp., Amsterdam 1967; J. Crank, “The Mathematics of Diffusion’, Oxiord Univ. Press,
London 1975.

227. Chemical Selectivities Disguised by Mass Diffusion.
II. Mixing-Disguised Nitrations of Aromatic Compounds with
Nitronium Salts™?)
2nd Communication on the Selectivity of Chemical Processesl)

by Friedrich Pfister, Paul Rys and Heinrich Zollinger

Technisch-Chemisches Laboratorium
Eidgendtasische Technische Hochschule, Ziirich

(16. XI. 73)

Summary. The results of this study show that three parameters are sufficient to describe
the selectivity behaviour of nitrations influenced by mixing as long as a fast combination of the
reactant solutions takes place and fast agitation is employed. This is in full agreement with the
prediction of the mixing-reaction model developed previously [1]. Furthermore, the results show
clearly that in nitromethane the formation rate of nitronium ions from nitric acid is slower than
the mixing rate and the rate of the electrophilic substitution proper. From the mixing-disguised
selectivity curves for the nitrations of durene and prehnitene with nitronium hexafluorophosphatc
in nitromethane the ratio of the rate constants Ay for the second nitrations can be estimated to
be 1:2 For the two aromatic éompounds the ki/#p ratios are » 104, Finally it could also be
shown that small impurities in/ the solvent (e.g. water) can influence strongly the selectivity
curves, depending on the method used for mixing.

1. Introduction. - In the Part I of this series [1] a simple mixing-reaction
model was developed which: allowed a description and simulation of the coupling of

1) Part I and 1st Communication ¢f. (1].
%) Results taken from the PhD. thesis of F. Pfister [2].





