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226. Chemical Selectivities Disguised by Mass Diffusion 
I. A Simple Model of Mixing-Disguised Reactions in Solution 

lBt Communication on the Sclectivity of Chedcal Processes 

by Roland J. Ott and Paul 'Rys 

Tcchnisch-Chemisches Laaboratoriurh 
Eidgcnossieche Technieche Hochschule, Zurich 

(16. XI. 73) 

Suwmary. The influence of maas diffusion on substrate and po4tional eelectivitics is discussed. 
A simplc model is  deveIoped which allows a description and simulakion of the coupling of the mass 
diffusion with the' chcmical reaction during the mixing process bf two rcactant solutions. For 
competitive, consecutive reactions and cornpetitivc, parallel reactions the general behaviour and 
the dependence of thc product sebctivity on diffusion effects is demonstrated. 

1. Introduction. - Kinetic studies can be used to establish the mechanism of a 
reaction if, and only if, the results represent the real course of the chemical reaction, 
namely the bond breaking and bond making step. In the case of fast reactions this 
condition is not always fulfilled as pre-equilibrium diffusion processes can disguise 
the kinetics of chemical reactions and hence affect the distribution of the products in 
competitive reactions (diffusion-disgzcised selectivity). In general there are at least 
two situations in which diffusion effects may be involved in reactions in solution. The 
observed kinetics of a reaction can be 

a) influenced by the rate of mixing of the reaction solutionsl) (= mixing-disggised 

b) determined by the rate of formation of the encounter complex (= encounter rate- 

To avoid B rnisintcrpretation of the kinetic data one has to take into account such 
diffusion effects. 

It is necessary to specify clearly the influence of the difiusion process on various 
selectivities: Whereas the positiolzal selectivity depends on the probability of a 
successful collision within the encounter complex and therefore is not 1inked.directly 
with diffusion effects, the subs&& 'selectivity of fast reactions is, in most cases, 
disguised by such diffusion effects. The results of various investigations [3] are 
explicabfe with the help of this concept of disguised kinetirs and selectMy. 

1) 

2) 

kinetics) or 

d&mineaY) kinetics). 

-- - 
For an introduction to the treatment of mixing prohlems see [l]. For comprehensive papcrs 
compare [Z] .  
We spcak of encounter rate-determined kinetics if thc kinetics are infIuenced by two processes 
namely the formation of the encountcr complcx and thc chemical reaction within the en- 
counter complex. In encountcr ratc-Zimiled (controllcd) reactions the kinetics arc given only 
by thc rate of formation of the encountcr complcx. 
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Furthermore, empirical correlations based on studies of reaction kinetics, such 
as the linear selectivity relationship of free energies [4] postulated by R. C. Brawrz, 
will on$ provide useful information about the actual course of a reaction if diffusion 
effects are eliminated [5]. 

2. The Selectivity of R ction Systems Disguised by Mixing. - -  In Order 
to carry out a chemical reac f ion it is necessary to bring together the two reading 
species La, to mix them. If such mixing processes have an influence on the ratc of a 
chemical process they will also influence its sclectivity3). A knowledge of the effect 
of miXing is therefore of decisive importancc in the control and optimiiation of the 
distribution of the products formed. Basically one has to distinguish between steady 
state and non-steady state reaction systems. Several reports have appeared con- 
cerning the influence of diffusion processes on the selectivity of steady state systems 
in the field of heterogeneous catalysis [6]. In the present paper we concern ourselves 
with non-steady state systems such as those encountered in reactions carried out 
batch-wise. 

3. The Basic Concept of a Mixing-Reaction Model. - In order to describe 
the mixing process occurring during the addition of one solution to another by a 
model it is useful to consider the following processes: 
a) addition of one solution to another; 
b) eddy diffusion (mechanical transport of the eddies, e.g. by stirring) ; 
c) molecular diffusion (transport processes within the eddy). 

If we add a solution of a species A to a solution of a species B eddies of solution A 
in solution B are created, As a first approximation we will consider these eddies as 
spherical drops with const t mean radius R. This radius R depends on the intensity 
of the turbulence created b L i n g  and may he controlled, for example, by mechani- 
cal stirring. From the thee* of turbulence [7:1 one can cstimate the minimum mean 
size of such elements of liquid. For the usual solvents e.g. water, methyl and ethyl 
alcohol the mean minimum radius R of the eddies in optimal turbulence is approxi- 
mately 10-8 to 104 cm; this corresponds to  an agglomeration of about 1012 to lo1& 
molecules. The size of this liquid element increases with increasing viscosity of the 
solvent. In a mechanically well-stirred solution, thc single eddies undcrgo n fast 
mutual interchange (a so-called eddy diffusion [8J). Generally this eddy diffusion 
is much faster than the 
a very important 
the concentration 
be neglected. 

diffusion within the eddy. Owing to  this fact 
can bc made for our model, namely that 

of the eddies and the solution can 
the intcrfacc of the eddies corre- 

In order to obtain a simple 
one of the reactants 
eddy into which the 

by molecular dif- 

8) The selectivity of camp&& processes can bc clelincd as the ratio of their rclaxation tirks, 
The relaxation time (z) of aiprocess is  the time nccded for thc system ta traverse a fraction 
of its path to equilibrium. ' 
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fusiod), The moment the chemical reaction occurs tHe diffusing mobile molecules 
(species B) change their identity and consequently are ~ considered as immobilized in 
the eddy. 

In thc present paper we will consider the influence of mixing effects on the 
selectivity of the two most common competitive reactions, namely the Competitive, 
consecutive and the competitive, parallel reactions. 

Competitive, Consecutive Second- Order Reactions : 
A-1-B & R primaryreaction 

R +  B A+ S secondaryreaction 
(Scheme I )  

k1, Re: real second-order rate constants. 

To form one molccule of the secondary product S two molecules of B, in two con- 
secutive reaction stages, are immobilized. In Fig. 1 the rnixing-deiermid reaction 
course of a competitive, consecutive reaction is schcmatically sketched: One molecule 
of B can react with a molecule of A only if it can move successfully through the 
peripheral zone of the R molecules already formed, i.e. if it does not react with the 
primary product R to give the secondary product S. The probability that this secon- 
dary reaction takes place decreases with an increase in the rate of diffusion. The yield 
of the product S is therefore a measure of the efficiency of the transport processes 
occurring in the reaction system. In the most extreme case of a mixing-limited 
reaction none of product R but only product S will be found at the end of the reaction, 
irrespective of the magnitude of the ratio Ki/kz. 

t 0  tl t 8 

Fig. 1. Schematic ve$resentatiolr of a mixing-determined reaction cowse fov competitive. cousecutiue 
second-order reactions (Schcrne 1)- assumiflK constarrt eddy si8e. to  < ti < t 8 :  reaction times; 
mobile species : + reagent B; immobile species : o reagent A; 0 primary product R; secondary 

product S 

Similarly, onc could consider the molecules B to bc immobile in the eddies into 
which the mobile molecules A could penetrate by. molecular diffusion from the 
surrounding solution. In this case the product R has to  be considered as a new mobile 
species which could diffuse to a further molecule of B and would be immobilized by 
reaction. These two approaches should in principlc give similar descriptions of the 
system. 

4) In reality a diffusing rnoleculc B entcring into the eddy replaces a solvent molecule. The fact 
that this is not considered in the present model docs not affect the applicability (usefulness) 
of the modcl. 
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Competitive, Parallel Second-Order Reactlons : 

A + B  -b P 
C + B  Q 

( S c h e  2) 

h, k4: real second-order rate constants. 

2077 

The species A and C compete for the same reagent B. In Fig. 2 the mixing- 
d m i d  reaction course of competitive, parallcl reactions is shown schematically: 
If the concentrations of the molecules A and C are equal and if k3 & k4 the reaction 
zone of product P precedes the reaction zone of product 9. In order that the reagent 
B can react with A to give P it has to diffuse first through the already formed zone 
of product P which contains many more unreacted molecules of C than of A. Com- 
ponent C therefore, appears to react faster than would be expected from the ratio 
ka/k4. This leads to a decrease in the selectivity, which tends to the value 1 for the 
most extreme case of processes limited by mixing. 

ta tl t 2 

Fig. 2. , Sch~mlrtic r@resmlation of a mixing-detcrmined rsaclaon cnuvse for comfistitive. fiavdlel 
sbcolld-qvd6Yvsaciions (Scheme 2). assuming consta%l eddy size. t o  < ti < tz: reaction times; mobilc 
species + reagent B; immobile species: o reagent A: A reagcnt C; product P; A product Q. 

4. Mathemadcal Descriptlon of the lMixing-Reac~on-Process3. - The 
rnoleclllar diffusion process of the mobile moleculcs within the eddies can be considered 
as a ‘random walk’ and as a non-steady state diffusion process; it can be described 
by the second Fickiarc equation: 

For spherical geometry we hwe to put (da/drz + 2/r d/dr) in place of V: 

[B] 
[B]w total concentration of the inobile and immobilized molecules .B [mol/l] 
D 
r polar coordinate [cm] 
t time [el 
VP Laplacian operator 

6) 

concentration of the mow molecules B [rnol/l] 

diffusion coefficient of the mobile molecules B [cmE/s] 

For a more detailed derivation of the equations which are used to describe the mixing- 
reaction system see Appendp. For definition of symbols, see list at end. 
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The diffusion equation (1) represents the general type of a parabolic partial dif- 
ferential equation for equalization processes (e.g. mass, heat flow) ; it describes the 
correlation between the local and temporal change of concentration. The left hand 
side of the equation (1) represents the difference in flux in and out of the two opposite 
boundaries of a volume element. The right hand sidc is the amount accumulated in 
that volume element. The equation formally expresses the fact that these two 
quantities must be equal. Fick's second equation is not, therefore, a statement of 
a new mechanistic assumption or proposition. It is merely a necessary condition for 
the conservation of material. I t  follows that the left band side must be concerned 
with the mobile molecular species subject to thc diffusional statistical motion which 
opposes maintenance of an existing gradient of concentration. The right hand side, 
however, does not imply anything about the state of the molecules (mobile, im- 
mobilized or both) added to the volume element. In any event, this concentration 
refers to the total number of molecules which have arrived in the volume element 
but have not departed. It follows that [B]tot ==. [B] only if a pure diffusion process 
takes place. In the case when an immobilization process takes place at the reactive 
sites A of the substrate - in the present case, a change of chemical identity of the 
species B by chemical conversion - the following equation is  generally valid: 

[Bltot = P I  + @ ( P I ,  t) 
@([B], t) immobilization function 

For competitive, consecutive reactions (Scheme I) equation (3) is valid. 

[BltcJt = P I  + [RI + 2 [SI 
concentration of primary product R [mol/lJ 
Concentration of secondary product S [mol/lJ 

[RJ 
CSI 

(3) 

Combining equation (3) with Fick's second equation (1.b) we obtain the diffusion- 
reaction equation (4) for spherical geometry : 

The local concentration change of the two species R and S are given by the dif- 
ferential equations (5) and (6). 

(5) - . =  b[R" 
at hi IB] ([A], - [RI - [S]) - A2 [Bl [Rl 

[A10 initial concentration of A [m~l/l] 
R1, k p  real second-ordcr rate constants [l/(mol s)] 

For competitive, parallel reactions (Sckeosle Z), equation (7) is valid: 

[Bltot [B] -I- [PI + rQ1 (7) 
lP3 
J.91 

concentration of product P [mol/l] 
concentration of product Q [mol/lJ 
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Combining the equation (7) with Fick’s second equation (lb) we obtain the dif- 
fusion-reaction equation (8) for spherical geometry : 

The local concentration chamge of the two species P and Q are given by thc dif- 
ferential equations (9) and (10) : 

(10) -- ‘[‘I - k4 P I  WI0 - 191) Bt 

[C], 
10g,k4 

initial concentration of C [mol/lJ 
real second-order rate constants [l/(mol s)] 

The equations (4) - (6) and (8) - (10) can be normalized by introducing the 
following dimensionless parameterse) : 

[B]o iditial concentration of the mobile molecules B [mol/l] 
K mean radius of the eddies [cm] 
spi,I ntwmalized rate constant of the reaction step i with respcct to [B]o. This cxpression cor- 

relsponds to the square of the so-called Thi.sh-ModUl which is used to charactcriec diffusion 
ddtermined (steady state) heterogeneous reactions [6] [12]. tp; is proportional to thc ratio 
of relaxation times of diffusion and chcrnical reaction (111 [13]. 

For experimental appraisal of the system it is convenient to discus the initial 
conditims in terms of mol ratios (*E). Therefore, a, the ratio of eddy volume con- 
taining A or A and C to solution volume containing B is introduced: 

jp&Bi 

a *Bs = a BB , *E = EC E; *&,I = a &,I; = 2 

i-+1,2,3,or4 

This generalization leads to the equations (11) - (16) : 

6) The normalization was performed using [BJw In a similar way [A10 could be used in thc 
normalization procedure. This would lead to other dimensionless parameters which would Ic 
labelled with the index A, e.g. BA = [B]/[A]o. 
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Competitive, Consecutive Second- Order Reactioqe ( S c k m  7)  : 

+2--- @*BB 2 ~ * B B  ~ * B B  d*J2n,~ 
. + - - = - + ---_ . d * s B , 8  

dX2 x dX dT dT dT 
d*QB,l 

= *& *BB (*E - *%,I - *SB,a )  - *& *BB *JZB,I dT 

Compedtive, Parallel Second- Order Reactions (Scheme 2) : 

d z * B ~  2 d*Bn d*Bs d*&a d * J ; ) ~ , 4  + -- -. dxz-- + -- .- _ .  -- + .-I.. x ax dT BT dT 

- *v;,~ *BE (M *E - *&3,4) 
d*&,4 -. . 

dT 

5. Procedure for Numerical Solution. - Thc two systems of equations 
(11)-(15) and (14)-(16) consist of parabolic partial differential equations (11) and (14) 
which are coupled with eq. (IZ), (13) and (15), (16) rcspectively. Since an analytical 
solution of such systems does not exist, a numerical approximation must be used. 
In addition to the stable explicit finite difference method [9], the Mdhod of L i w  
[lo] was also used. The detailed procedure has been described elsewhere [ll]. The 
computer programme was written in FORTRAN and the calculations carried out on 
a CDC 6400/6500 computer. 

6. Simulation of Mixing Disguised Competitive, Gonsecutive Reactions?. - 
The system of equations (11)-(13) which describcs the mechanism of competitive, 
consecutive secondader reactions coupled with a diffusion process is determined 
by the three parameters *E, *r& and the initial and boundary conditions'). 
For *E = 1 and with *t& constant an increase in the value of *c&,~ will result 
in an increase in the relative yield Xs of the secondary product S. This is shown in 
Fig. 3 for 100% conversion (*BB = 0). A clearer representation of the influence of 
diffusion effects on XS is given in Fig. 4. With an increase of - i.e. an increasing 
influence of the diffusion process - the relative yield of the product S exceeds the 
value of the reaction controlled process. The smaller the value of *yLZ the closer 
will be the yield of S to  the reaction controlled value. On the other hand, the extreme 

7) The initial conditions for all calculations are defined in the Appendix (A-22). The boundary 
conditions arc given by equations (A-23) and (A-24). 
For given initial conditions and varying boundary conditions (by changing a). calculations 
for 100% conversion of the species B (*Bn = 0) have shown that X s  and 8, values arc 
determined solely by the values of *&, *vi,s and *E, irrespective of the specific value of a. 

.-- ..- 
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case where only the product S is found will be reached when *& approaches 
infinity. The more the process is disguked by diffusion i.e. *piz is large, the less 
the ratio *&/*piz (respectively Rl/h) will effect the relative yield XS of the 
product 5. In Fig. 5 the effectiveness E~ of the chemical reaction on the formation 
of S is shown as a function of *q& for different ratios of * c p ~ , J * ( ~ ~ , ~  8, xe- 
presents the factor by which the chemical reactivity influences the selectivity of the 
total process and is given by the ratio of the reaction controlled and mixing disguised 
Xs-values [14]: Er = 1 means that the selectivity is determined exclusively by the 
chemical reactivity. The values calculated for the Fig. 3-5 are listed in Table 1- 

lo-' I rn 
Fig. 3. DifMion-Reaction-Model: Cdcukrtsd raktive yields XS 0s a fwnction of *pi,B for dijferbnt 

u d w s  of *rp&, (spherical geometry) *E = 1 ; *BB = 0 

I 

m-' 1 lo lo' ID' 
Fig. 5. Diffusiorr-Reaction-Mohl Cdculatadeffectiue~ss cr as a function of fw different ratios 

of (spherical geometry) *E = 1; *BB = 0 

131 
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Table 1. D a f f ~ i o n - R e ~ t ~ o n - M o d e l :  The inf luence ofthe pararneterls *&, and * ~ p \ , ~  on competitive, 
consecutive second-order reactions (Scheme 1 ; sHerical geomelry) 

*E = 1; *BB = 0; RC: reLLCtiOn-COIitJOlled (*p%+ 0) 

*IP'B,1I*Q8n,S * (PB.1 * ! R e  mol "/o S8) xs E r  

1 

2 

5 

10 

10% 

104 

RC 
0.1 
1 
2 
10 
50 
100 
250 
500 
1000 
KC 
0.2 
2 
20 
40 
200 
400 
RC 
5 
12.5 
50 
100 
180 
300 
1000 
HC 
1 
10 
25 
50 
100 
250 
500 
1000 
2000 
RC 
10 
50 
100 
500 
1000 
5000 
RC 
1 x10= 
5 xlOa 
1 X l W  
4 x i 0 4  
1 x106 

KC 
0.1 
1 
2 
10 
50 
100 
250 
500 
1000 
RC 
0.1 
1 
10 
20 
100 
200 
RC 
1 
2.5 
10 
20 
36 
60 
200 
RC 
0.1 
1 
2.5 
5 
10 
25 
50 
100 
200 
RC 
0.1 
0.5 
1 
5 
10 
50 
RC 
0.1 
0.5 
1 
4 
10 

4x105 40 

31.8 
31.Y 
32.1 
32.2 
32.6 
36.8 
39.9 
43.8 
45.6 
46.5 
24.8 
24.9 
25.0 
26.4 
29.2 
38.8 
42.5 
16.7 
16.9 
17.5 
22.6 
27.5 
31.6 
35.1 
42.3 
11.6 
11.7 
12.0 
13.6 
16.5 
20.9 
28.0 
33.4 
38.1 
41.9 
2.6 
2.8 
4.0 
5.9 
14.5 
19.9 

0.1 
0.6 
2.8 
4.9 
12.2 
19.5 
30.6 

32.8 

0.636 
0.639 
0.642 
0.644 
0.653 
0.736 
0.799 
0.876 
0.912 
0.931 
0.497 
0.498 
0.500 
0.529 
0.585 
0.776 
0.850 
0.334 
0.337 
0.350 
0.451 
0.549 
0.632 
0.702 
0.845 
0.232 
0.234 
0.241 
0.272 
0.329 
0.418 
0.560 
0.668 
0.761 
0.839 
0.052 
0.056 
0.080 
0.118 
0.291 
0.399 
0.657 
0.002 
0.013 
0.056 
0.097 
0.243 
0.389 
0.612 

1.000 
0.99% 
0.993 

0.974 
0.864 
0.796 
0.726 
0.697 
0.683 
1.000 
0.996 
0.992 
0.940 
0.850 
0.640 
0.585 
J .000 
0.991 
0.954 
0.741 
0.608 
0.528 
0.476 
0.39.5 
1 ,000 
0.991 
0.963 
0.853 
0.705 
0.555 
0.414 
0.347 
0.305 
0.277 
1.000 
0.929 
0.650 
0.441 
0.179 
0.130 
0.079 
1.000 
0.154 
0.036 
0.021 
0.008 
0.005 
0.003 

0.988 

8) Mol-O/, arc rclatd to thc initial moles of B. 
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Fig. 6 shows the relative yields X ,  calculated for the ratio *~p; ,~/*yk,~ = 1 
(or K& = 1 , respectively) as a function of the parameter *E. At all values of *y&, 
the relative yield Xs decreases as *E increases. The greater the value of *pk,z the 
smaller is the decrease in the yield of XS. 

Fig. 7 shows the influence of the parameter *E on the effectiveness of the chemical 
reactivity on the formation of S. For a given value of *t& the influence of the 
chemical reactivity on the selectivity of the proccss decreases with increasing values 
of *E. The calculated values for the Fig. 6 and 7 are listed in Table 2. 

lo-' 1 lo lo' 
Fig. 6. Diyfusim-Reaction-Model: Galcdakd relative yields Xs as a fwaction of *(PB,~ for disfwent 

values of *E (sphcriccll geometry) *~p&,,/*tp\,~ = 1; *BB = 0 

lo" 1 10 10' loa 
Fig. 7. D@usior-Reaction-Mo I :  Calculated effectiveness E= czs a fumtiota of *pb,* for  diffvert  

valws of *E 4 ( Plhsrical geome#vy) +y$,J8cp%,g - 1 ; 'BB = 0 

In Fig. 8 the simulated data are plotted in a rnanncr which allows an easy survey 
of the experimental results. The relative yield Xs is shown as a function of *p& 
for various *E *p& and qp:,J*ppX2 (or k$2, respectively) values. The XS values 
which can be obtained, for instance, by varying [B]o only and keeping [A10 and the 
mixing conditions constant, all lie on an 5-shape curve (selectivity curve) whose 
position dong the *c&-aKis depends only on the value of *E *&. As a consequence 
of this, the relative KZ values for different substrates can be found from the relative 
positions of the respectiv selectivity curves using a particular value of *E as a 
reference point. 

7. Simulation d Mixlwg Disguised Competitive, Parallel Reactlons. - The 
system of equations (14) -(16) which describes the mechanism of competitive, 
parallel second-order reactions coupled with a diffusion process is determined by 

7 

I 



2084 HELVETICA CHIMICh ACTh - VOl, 58. FaX. 7 (1975) - Nr. 226 
TabIe 2. Diffusion-Reactim-Model: The influence of t b  pavawelev +E MI m#etitive, consbcutive 

second-wder veactiow (Scheme 1 ; sphericut geometty) 
* q ~ ~ . ~ I * p ~ , ~  = 1; *BB = 0; RC: reaction-controlled (*q',+ 0) 

*E *piBB mol% XS Er *E *& mol% Xs Er 

8 8 )  S8) 

1 RC 
1 
10 
50 
100 
500 
1000 

2 RC 
1 
10 
50 
100 
500 
1000 

31.8 0.636 1.000 5 RC 
32.1 0.642 0.993 1 
32.6 0.653 0.974 10 
36.8 0.736 0.864 50 
39.9 0.799 0.7% 100 
45.6 0.912 0.697 500 
46.5 0,931 0.683 1000 
19.1 0.382 1.000 10 RC 
19.3 0.387 0.987 1 
21.1 0.422 0.905 10 
28.5 0.571 0.669 50 
32.5 0.650 0.588 100 
41.4 0.829 0.460 500 
44.1 0.881 0.434 1000 

8.8 0.177 1.000 
8.9 0.178 0.982 
12.5 0.251 0.704 
20.9 0.419 0.421 
25.4 0.508 0.348 
35.8 0.717 0.246 
40.2 0.804 0.220 
4.7 0.093 1.000 
4.8 0.097 0.963 
9.0 0.179 0.522 
17.5 0.350 0.267 
22.2 0.444 0.210 
33.4 0.668 0.140 
38.1 0.761 0.123 

the four parameters *El *& *rpi4, M and the initial and boundary conditionsB), 
For *E = 1 the relative yield of the product Q, expressed as the mol fraction Xg, 
approaches a mixing-limited selectivity-value for each value as *pi,4 in- 
creases. This is shown in Fig. 9 for 100% conversion (*RB = 0). 
Fig. 10 shows for *E = 1 and M = 1 that for every *sp&/*~;,~ ratio the relative 
yield XQ approaches the same mixing-limited value of 0.5. This limiting selectivity 
value depends on the parameters *E and M as demonstrated in Fig. 11 and Fig. 121 
respectively. The calculated values for the Fig. 9-12 are listed in the Tables 3-5. 

0)  The initial conditions for all calculations are the same as those used in the calculations of the 
competitive. consecutive reaction system (Appendix, (A-22)), except that m] = [S] = 0 is 
replaced by [PI = [ Q] = 0. 
Xe valucs for 100% conversion of the species B are determined solely by the values of *&,,, 
*t&, M and *E (compare footnote 7).  
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Fig. 10. Difjur 

aoi 
0.1 

a3 
1 

1 10 10- lo- 
i ion-React ion-Modsc:%dc~~d relative yields XQ BS a function of * 
rdios +rp',,s/+cp~,, (s+hm'cdgeometry) *E = 1;  M = 1; *BB = 

- 1  I 

'IP8.4fO' 
0 

lo-' 1 lo lo2 lo3 
Fig. 11. Difjlcsion-R#a&on-Mo&L: C d c d a k d  relative yields Xq as a function of *cp5,4.f0r dijferent 

valws af M (spkwicdgdomstvy) *cpb,s/*& = 100; *E = 1; *BB = 0 

1 10 d 10' lo' 
Fig. 12. Diffws;;n-RsacHorr-Modd: Cdcclrlatsd r d d h  yields XQ as a fwctiovz of for differed 

v a b s  of *E ( s + h w M  gemfry) *&/+rp&,4 = 100; M = 1; *BB = 0 
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and *Pi,4 on cotq5etitive 
parallel second-order reactions (Scheme 2 ;  spherical geometyuy) 

RC: reaction-controlled (*& 4 0) 
*E 3 1; M G 1; *BB = 0 

10s RC 
104 
10-8 
10-1 
3 x 10-1 
1 
3 
10 

10-1 RC 
10-2 
10-1 
1 
3 
10 
108 

1 HC 
10-2 
10s 

10 RC 
10-1 

HC 
10-1 
1 
10 
30 
103 
3x102 
10s 

RC 
10-1 
1 
10 
30 
10s 
10s 

RC 
10% 
10s 

RC 
10' 

0.966 
0.966 
0.966 
0.965 
0.961 
0.936 
0.887 
0.804 

0.835 
0.835 
0.830 
0.825 
0.817 
0.757 
0.593 

0.500 
0.500. 
0.500 

0.160 
0.160 

10 1 
10 
108 
10s 
104 

108 RC 
1 
10 
102 
108 
5x103 
104 
10s 

103 RC 
108 
10s. 
3xlOa 
104 
J x 104 
1 06 
106 

10-1 0.160 
1 0.170 
10 0.247 
102 0.404 
1Oa 0.489 

RC 0.033 
10-8 0.035 
10-1 0.045 
1 0.075 
10 0.200 
50 0.340 
102 0.3% 
10s 0.488 

nc 0.005 
10-1 0.010 
1 0.049 
3 0.100 
10 0.200 
50 0.340 
1.08 0.400 
103 0.488 

Table 4. Diffwiorr-Reaciion-Model: The inflmnce ofthe paramelap M OA competitive, parallel second- 
wdev yeactions (Schemc 2 ;  sphwical geaancivy) 

*cp&,a/*(P&,4 = 100; 'E = 1: 'BB = 0 
RC : reaction-controllcd (* (pk + 0) 

M * a  Pn.4 XQ M 'QPB.4 XQ 

1 RC 
10-1 
1 
10 
102 
109 

2 RC 
10-1 
1 
10 
105 
109 

5 RC 
10-1 
1 
10 
108 
108 

0.033 10 
0.045 
0.075 
0.200 
0.3% 
0.488 
0.057 20 
0.060 
0.105 
0.270 
0.495 
0.690 
0.109 so 
0.110 
0.180 
0.400 
0.635 
0.835 

RC 
10-1 
1 
10 
10s 
1Oa 
RC 
10-1 
1 
10 
1On 
10s 
RC 
10-1 
1 
10 
1 oa 
1Oa 

0.174 
0.180 
0.270 
0.500 
0.710 
0.860 
0.264 
0.275 
0.370 
0.580 
0.785 
0.880 
0.425 
0.435 
0.530 
0.710 
0.850 
0.890 
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Tabelle 5. Difficsion-Rclrclion-Modcl: The injlweltce of the pararnakr +E on cmfaetitive, parallel 
second-ovdcr yeactions (Schcme 2 ; +herical geometry) 

RC: reaction-controlled (*&, 3 0) 
*p&,a/*v&,d = 100; M = 1; *BB = 0 

‘E cPB.4 ~ xQ *E *vL4 XQ * I  

2 10 

1 RC 0.033 5 RC 0.011 
10-1 0.060 10-1 0.012 
1 0.064 1 0.018 
10 0.202 10 0.045 
102 0.3% 109 0.230 
103 0.490 10s 0.405 
104 0.495 104 0.485 
RC 0.013 RC 0.01 0 
10-1 0.014 10-1 0.011 
1 0.025 1 0.01s 
11) 0.105 10 0.024 
108 0.295 10% 0.190 
103 0.455 10s 0.378 
104 0.493 104 0.477 

8. Conclusion. - Coupling of mass diffusion with chemical reactions during the 
mixing process of two reactant solutions has been simulated with the help of a simple 
model. The general bcl-iaviour of a competitive, consecutive and a competitive, 
parallel second-order reaction can be adequately described by three or four para- 
meters, respectively. Thcse parameters, which can be varied experimentally in a well 
defined manner, determine to what extent the product selectivity is disguised by mass 
diffuqion effects. As long as the mixing modulus *t& of the faster of the competing 
react$ms is smaller than GO. 0.1, diffusion effects on product selectivity can be 
ignorhd. However, mixing-disguiscd selectivities arc highly probable when * tpi is 
greatkr than 10. 

Appendix 
I)9rivption of the DWudon-Reacrion Equations (4)-(6) 1151. - After applying the 

law 01 conservation of mass of species i to a differential volume element fixed in space in a dif- 
fusionmaction system and allowing the size of thc volume element to decreasc to zero, onc 
obtains: 

dNjx dNiy nci at =-(- dX . .. + . dY . -  + d???), az ri (A-3 a) 

Nix, #in Niz rectangular components of the molar flux vector Ni [mol/(cmg s)] 
c1 : molar concentration of species i [mol/cm3] 
ri . 
t time Ls] 
x. y, I 

molar rate of production by chemical reaction of species i [mol/(cma s)] 

rectangular coordlinates [cm) 

This is the equation of coqkhuify which describes thc change oi molar concentration of the 
comppnent i with rcspect to time at a fixed point in space. This change results from thc motion 
of spdciee i and its chemical rcaction. - 

__ dci = - ( V - N j )  + ri (A-lb) Bt 
st 
V ‘del’ or ‘nabla’ operator 

inolar flux of species i with respcct t o  stationary coordinates [mol/(cme s)]  
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The 'vector differential operator V is defined in .rectangular coordinates a8 

+ d  - b  - b  
V = d x - - t d  - t + 8 . - -  dr d y  az 

&,&, unit vectors associated with the x, y, z-coordinatcs 

4 

Ni is replaced by the appropriate expression (A-7) which includes the concentration gradient. 
In order to  obtain the equation which is generally used to describe diffusion the molar flux 

(A-3) 

(A-4) 

--L 

J i =  - c D i V x i  

Ni = c i b -  CDiVXi 
-? 

Q 
Ji  
C total molar concentration [mollcmal 
i4 
f molar average velocity [cm/s] 
xi 

diffusion coefficient of species i [cmB/s] 
molar flux of species i relative to the molar averagt velocity [mol/(cm~ s)] 

velocity of species i [cm/s] 

mol fraction of species i [ - ] 

4 

Equation (A-3) shows that the diffusion flux $4 relative to stationary coordinates is the 
resultant of two vectors, namely the vector given by equation (A-5) which is the molar flux of 
i resulting from the bulk motion of the fluid and the vectorlo) gi3en by equation (A-6) which, in 
turn, is the molar flux of i resulting from the diffusion superimpo$ed on the bulk flow. 

When.equation (A-7) is substituted into equation (A-lb) we s t  the following diffusion equa- 
tion : 

dci 
at . = - (V . ci 2) f (V . c Di V XI) f ri (A-8) 

Equation (A-8) describes the concentration profiles of the species i in a diffusing system. Thc 

A88umptton of Gonspatlt c and Di. - If c and Di are assumed to be consttantll) equation 

only restriction is the absence of thermal, pressurc and forccd diffusion. 

(A-8) becomes: 

(A-9) dCi - = - c i ( V # ? ) -  @ . V c i ) + D i V 2 c ~ + r i  at 
Assumption of Zero Molar Velocity. - Considering a single eddy of the substratc we 

assume that the molar velocity within the eddy is zero. For rlilutc solutions, this assumption 1s 

10) Jl = - c D1 V xi is FicR's first equation of diffusion written in terms of the molar diffusion 
* 

flux 5;. 
11) Umdv fie experimental work is carried out with dilute sohtions, thus tho concentration 

of the solvent is much greater than that of the solutes and remains constant for an incom- 
pressible fluid. The sum of all concentrations, i.0. c, may be *+ken as constant. 
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valid and equation (A-9) becomes: 

V8 LaplPcianoperator 

The Laplacian operator Va is Befined in rectangulat cootdinatea as 

If. in addition there axe no chemical changes occurring, one obtains 

(A-10) 

(A-1 I )  

( A-1 2) 

which ia called FicA's second equation of diffusion. 

Ansumption Oi Spherical Eddy with Conetaat Mean Radiua. - If we consider a 
sphere in which diffusion occurs from the surface to thc centre, the diffusion-reaction equation 
(A-10) for 8 oollstant diffusion coefficient takes the form 

(A-13a) 

(A-1 3 11) 

Assumption of Zem DUblon d the 8abetrat6 A, the Primary Product R and the 
Secondary Product 81). - $18 a first approximation to simulate the diffusion-reaction 
system described in Chap. 4 we assume a stationary (fixed) substrate A, primary product R and 
s e d g y  product 8, i.8. the  molraculee A, R and S are supposed to be fixed within the eddy into 
which specks B diffuses and reaota with A or R. Although this is a drastic simplification which 
in &fy i8 certainly not true, it lead8 to a simple mathematical model that enable8 one to describe 
quahta@mly the real system. 

For thie assumption fS in equation (A-13b) can bc replaced in a competitive, consecutivc 
second-order reaction system by the expression (A-16) : 

k A + B'.- R 

R+BLS 

= ka [R] [BJ dt 

(A-14) 

( A-1 5 )  

(A-16) 

(A-17) 

1q competitive, parallel case can be treated in a manner analogous to the  competitivc, 
cobaecutive case: this leads to equations (8), (9) and (10). 
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Since tvc concentration of species A is chsngcd only by chemicaJ reaction the appropiate equation 
for this species reduces to * c -h i  [A] [B] (A-18) dt 

This is similar to equations (A-14) and (A-15) for species R and S. The right hand side of equation 
(A-18) can be replaced by equation (A-14) and (A-15) : 

(A-19 a) 

(A-19 h) 

The sum of the differcntials of the conccntrations of A, R and S is zero, hence tho sum of thc 
conccntrations thernsclves must be constant and equal to [Ale 

[A1 + CRI "t. [SJ = [A10 ( 4 -  20) 

When equation ( A-20) is substitutcd into equation (A-14) we obtain the following equations which 
describe'the diffusion-reaction system of spherical gcomctry asspming a compctitive, consecutivc 
chemical reaction : 

(A-214 

Aselamption of Diffueion from a well stirred Solution of Mmited Volume. - The 
solution of the diffcrcntial equation system (A-21) has to satisfy certain specified initial and 
boundary conditions. I& us assume that thc sphcrical eddy ocmpies the spacc r < g, while thc 
volumc of the bath solution containing the diffusing species B (excluding the space occupied by 
the eddy) is V,. Thc concentration of solute B in thc solution ib always uniform and is initially 
[Bl0. 'fie sphere containing the substratc A is  initially free from solute B: 

(A-22) 

Bolcndavy conditioras : Thc general solution of a sccond-order partial differential equation 
should contain two arbitrary functions. These two arbitrary functions in the mathematical solution 
must be chosen to satisfy the boundary conditions dictated by the assumption of diffusion into 
a sphere from a well stirred limited solution. 

The arbitrary functions (A-23) and (A-24) result from both thc symmctry of the sphere and 
the law of ccmscrvation 01 niass of the diffusing spccics B. Owing to the symmctry of the sphere, 
there is no flux of B through the origin of the sphcrc i .e .  the concentration gradient is zero. 

(A-23) 

Applying the law of conservation of mass to the volume of solution V, for the species B we ohtain : 

(A-24) 
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(A-25) 

(A-26) 

Se 
ve 
V. 

When equation (A-25) and (A-24) are substitutcd into cquation (A-24) the following cxprewion 
is obtained : 

surface of the spherical eddy [cmo] 

(A-27) 

a = Vi/V,: ratio of eddy volume to solution volume L-1 

Lht  d 8 p b O l S  

[A], [B]- [GI 
[Alo, [B]o. [C]O 
[mot  
ui 
13 = D g  

MD 

concentration of A, B and C respectively [mol/l] 
initial concentration of A, B and C, respectively [mol/l] 
total concentration of the mobile and immobilized molecules B [mol/l] 
diffusion coefficient of species i [crnz/s] 
diffusion coefficient of B [ern!-+] 
molar flux of species i relativc to thc molar average vclocity [mol/(cmZ s): 
mixing-disguised 
molar flux of species i with respcct to stationary coordinates [mol/(cma s)J 
rectangular component x of t h e  molar flux vcctor Ni [mol/(cd s)] 

mean radius of the eddies [cm] 
reaction-controlled ( pi --+ 0)  
surface of spherical eddy [cma] 
volume of spherical eddy [crns] 

TI 
G* 

.-b 

NiX 
[PI, [ 91. m], [S] concentration of product P, Q, R and S. respcctively [mol/l] 
K 
RC 
s* 
V. 
V. volume of solution [crna] 

xs = -- ['I normalizedlfraction of B which reactcd to give S [- 1 
[R3 -k zcG X s  = 1 : e&ry I3 moleculc has rcactcd to  givc! S (no R is found) 

cQ1 
P I  + 191 normalized fraction of B which reacted to give Q L - ]  XQ = 

I 

normalized concentration of B with rcspect to [BJ(I [ - ] 
conversion of B 

*BR ==a Bg = a - 

BB =.O: 100% conversion of B 
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+E=aP- . :a ’ -  initial mol ratio of A and B [- J 
[BIO 

ratio of initial concentrations of C and A [ - J 
[GI0 
[A10 

Me- 

T = - t  normalizcd time [ -1 
RZ 

@ “BI, t) immobilization function describing thc chemical convenrion of B 
normalized polar coordinatc [ - 3 

r 

E”. 
PI 

*&,i =:as~ . i  = a  - 63B.i is thc normalized concentrathn of the reaction product 1 
[Blo with respect to [ B I ~  [ - 3 

ratio of eddy volurnc to solution volume [ - 1 

unit vector ansociated with the x-coordinate 

effcctiveness factor of the chemical reaction 9s a part of the whole process. 
Er is defined as the ratio of thc reaction-corlroZZed (- RC) and the mixing- 
disgwased (= MD) XS values [ - ] Bt = 1 : the chemical process is reaction- 
conhollcd; et < 1 : the chemical process is rnidng-disguised 

relaxation time of diffusion [s] 
relaation time of the rcaction step i [s] 

VI, a=- 
V. z 

Er = ,X*c) 
XR(MD) 

r relaxation time [s] 
ZD 
ZE, 1 

* %  qB,, = a’ qlppu., = * 

1 gs ki [B]o 
--- pb, 1 is the nor~ualized rate constant of the reaction step i 

I) with respect to [BJo. I t  is proportional to the ratio of re- 
laxation times of diffusiod and chemical reaction atep i .  
( r D h ,  1) [ 1 

!Pi 4 1 
YB 
V 
vz I.aplac@n operator (see Appcndix) 

the chemical process is reaction-controlled (limited) 
the chemical process is diffusion-dekwuzined (disguised by diffusion) 
‘del’ or ‘nabla’ operator (sec Appendb) 
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227. Chemical Selectivities Disguised by Mass Diffusion. 
IF. Mixing-Disguised Nitrations of Aromatic Compounds with 

Nitronium Saltsba) 

by Friedrich Pfi~ter, Paul Rys and Heinrich ZoUlnger 
2nd Communication on the Selectivity of Chemical Processerl) 

TecIdsch-Chemisches Laboratorium 
Eidgenbhche Technische Hochachule, Zurich 

(16. XI. 73) 

Sujrrmary. The results of this study show that three parameters arc sufficient to  describe 
the selectivity behaviour of nitrations influenced by mixing as long as a f a s t  combination of thc 
reactaot solutions takes place and fast agitation is employed. This is in full agreement with the 
prediction of the mixing-reactio$ model developed previously [l]. Furthermore, the results show 
clearly that in nitroxnethane t h  formation rate of nitronium ions from nitric acid is slower than 
the mixing rate and the rate of he electrophilic substitution proper. From the mixing-disguised 
selectivity curves for the nihti of durene and prehnitene with nitroniurn hexafluorophosphatc 
in nitrometbane the ratio of th rate constants Rs for the second nitrations can be estimated to  
be l : Z  For the two aromatic il ompounds the kl/& ratios are 2 101. Finally it could also be 
shown that small impurities in( the solvent (e.g. water) can influence strongly thc selectivity 
curves, depending on the methog ueed for mixing. 

1. Introduction. - In the Part T of this series [l) a simple mixing-reaction 
mddel was developed which’ allowed a description and simulation of the coupling oi 

I) 
9 

R a t  I and 1st Communication cf. [l]. 
Rsaults taken from the PhD. thesis of F. Pfisteer [ Z ] .  




